
IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 8, August 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3844 235

Graph Clustering: Modified BFS Algorithm

Ishwar Baidari
1
, Ajith Hanagwadimath

2

Associate Professor, Department of Computer Science, Karnatak University, Dharwad, India1

Research Scholar, Dept of Computer Science, Karnatak University, Dharwad, India2

Abstract: Graphs are structures formed by a set of vertices also called nodes and set of edges that are connections

between pairs of vertices. Graph clustering is the task of grouping the vertices of the graph into clusters taking into

consideration the edge structure of the graph in such a way that there should be many edges within each cluster and
relatively few between the clusters. Here we present a polynomial time algorithm clustering a given graph according to

modified BFS algorithm.

Keywords: Clustering, Vertices, nodes, BFS.

I. INTRODUCTION

A. Graph Clustering

1) Models for clustered graphs:

Gilbert [1] presented in 1959 a process of generating

uniform random graphs with n vertices: each of the
possible edges is included in the graph with probability p,

considering each pair of vertices independently. In such

uniform random graphs, the degree distribution is

Poissonian. Also, the presence of dense clusters is unlikely
as the edges are distributed by construction uniformly, and

hence no dense clusters can be expected.

A generalization of the Gilbert model, especially designed

to produce clusters, is the planted l-partition model [2]: a

graph is generated with n= l.k vertices that are partitioned

into l groups each with k vertices. Two probability

parameters p and q <p are used to construct the edge set:

each pair of vertices that are in the same group share an

edge with the higher probability p, whereas each pair of

vertices in different groups shares an edge with the lower

probability r. The goal of the planted partition problem is

to recover such a planted partition into l clusters of k

vertices each, instead of optimizing some measure on the
partition. McSherry [3] discusses also planted versions of

other problems such as k-clique and graph colouring.

2) Cluster Properties:

No single definition of a cluster in graphs is universally

accepted, and the variants used the literature are numerous

[4]. In the setting of graphs, each cluster should intuitively

be connected: there should be at least one, preferably

several paths connecting each pair of vertices within a

cluster. If a vertex u cannot be reached from a vertex v,

they should not be grouped in the same cluster.

Furthermore, the paths should not be internal to the cluster.
As a consequence, when clustering a disconnected graph

with known components, the clustering should usually be

conducted on each component separately, unless some

global restriction on the resulting clusters is imposed. In

some applications one may wish to obtain clusters of

similar order and /or density, in which case the clusters

computed in one component also influence the clustering‟s

of other components. It is generally agreed upon that a

subset of vertices forms a good cluster if the induced

subgraph is dense, but there are relatively few connections

from the included vertices to vertices in the rest of the

graph [5, 6, 7, 8, 9].
One measure that helps to evaluate the sparsity of

connections from the cluster to the rest of the graph is the

cut size c (C, V/C). The smaller the cut size, the better

“isolated” the cluster. Determining when a cluster is dense

is naturally achieved by computing the graph density. We

refer to the density of the subgraph induced by the cluster

as the internal or intra-cluster density:

The intercluster density of a given clustering of a graph G

into k clusters C1, C2……Ck is the average of the

intercluster densities of the included clusters:

The external or inter-cluster density is of a clustering is

defined as the ratio of intercluster edges to the maximum

number of intercluster edges possible, which is effectively

the sum of the cut sizes of all the clusters, normalized to

the range [0,1]:

Globally speaking, the internal density of a good

clustering should be notably higher than the density of the

graph (Eq. (3)) and the inter cluster density of the
clustering should be lower than the graph density [10].

For general clustering tasks, fuzzy clustering algorithms

have been proposed [11, 12], as well as validity measures

[13]. Within graph clustering, not much work can be found

on fuzzy clustering, and in general, the past decade has

been quiet on the area of fuzzy clustering. Yan and Hsiao

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 8, August 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3844 236

[14] present a fuzzy graph clustering algorithm and apply

it to circuit partitioning. A study on general clustering

methods using fuzzy set theory is presented by Dave and

Krishnapuram [15].

A fuzzy graph GR = (V,R) is composed of a set of vertices

and a fuzzy edge-relation R that is reflexive and

symmetrical together with a membership function µR

assigns to each fuzzy edge a level of “presence” in the

graph [16]. Different nonfuzzy graphs can be obtained by

thresholding µR (v, u) ≥ τ are included as edges in Gτ.
The graph Gτ is called a cut graph of GR.

Dong et al. [16] present a clustering method based on a

connectivity property of fuzzy graphs assuming that the

vertices represent a set of objects that is being clustered

based on a distance measure. Their algorithm first

preclusters the data into subclusters based on the distance

measure, after which fuzzy graph if constructed for each

subcluster and a cut graph of the resulting graph is used to

define what constitutes a cluster. Dong et al. also discuss

the modifications needed in the current clustering upon

updates in the database that contains the objects to be
clustered.

Fuzzy clustering has not been established as a widely

accepted approach for graph clustering, but it offers more

relaxed alternative for applications where assigning each

vertex to just one cluster seems restricting while the vertex

does relate more strongly to some of the candidate clusters

than to others.

B. Clusters for different classes of graphs

It is common that in applications, the graphs are not just

simple, unweighted and undirected. If more than one edge

is allowed between two vertices, instead of a binary
adjacency matrix it is customary to use a matrix that

determines for each pair of vertices how may edges they

share. Graphs with such edge multiplicities are called

multigraphs.

Also, should the graph be weighted, cutting an important

edge (with a large weight) when separating a cluster is to

be punished more heavily than cutting a few unimportant

edges (with very small weights). Edge multiplicities can in

essence be treated as edge weights, but the situation

naturally gets more complicated if the multiple edges

themselves have weights.

Luckily, many measures extend rather fluently to

incorporate weights or multiplicities. It is especially easy

when the possible values are confined to a known range,

as this range can be transformed into the interval [0, 1]

where one corresponds to as “full” edge, intermediate

values to “partial” edges, and zero to there being no edge

between two vertices. With such a transformation, we may

compute density not by counting edges but summing over

the edge weights in the unit line: the internal density of a

cluster e (Eq. (22)) on Section 3.2 is rewritten as to

account for the degree of “presence” of the edges.

Now a cluster of high density has either many edges or

important edges, and a low-density cluster has either few

or unimportant edges. It may be desirable to do a nonlinear

transformation from the original weight set to the unit line

to adjust the distribution of edge importance if the

clustering results obtained by the linear transformation

appear noisy or otherwise unsatisfactory.

C. Bipartite graphs

A bipartite graph is a graph where the vertex set V can be
split in two sets A and B such that all edges lie between

those two sets: if(v, w) ∈ E, either v ∈ A and w ∈ B or v ∈

B and w ∈ A. Such graphs are natural for many

application areas where the vertices represent two distinct

classes of objects, such as customers and products; an

edge could signify for example that certain customer has

bought a certain product. Possible clustering tasks could

be grouping the customers by the types of products they

purchase or grouping products purchased by the same

people – the motivation could be targeted marketing, for
instance. Carrasco et al. [17] study a graph of advertisers

and keywords used in advertisements to identify

submarkets by clustering.

D. Directed graphs

Up to now, we have been dealing with undirected graphs.

Let us turn into directed graphs, which require special

attention, as the connections that are used in defining the

clustering are asymmetrical and so is the adjacency matrix.

This causes relevant changes in the structure of the

Laplacian matrix and hence makes spectral analysis more
complex.

Web graphs [18] are directed graphs formed by web pages

as vertices and hyperlinks as edges. A clustering of a

higher-level web graph formed by all Chilean domains

was presented by Virtanen [19]. Clustering of web pages

can help identify topics and group similar pages. This

opens applications in search-engine technology; building

artificial clusters is known to be a popular trick among

websites of adult content to try to fool the PageRank
algorithm [20] used by Google to rate the quality of

websites.

E. Vertex similarity

There are many clustering algorithms based on similarities

between the vertices. Should the vertices represent

documents, for example, one could compute content-based

similarity matrix as a basis for the clustering, attempting to

group together vertices that are not only well connected

but also similar to each other. The higher the similarity,

the stronger the need to cluster the vertices together.
Computing such similarities is not necessarily simple, and

in some cases evaluating the similarity of two vertices may

turn out to be a task even more complex than the

clustering of the graph once the similarities are known.

If a similarity measure has been defined for the vertices,

the cluster should contain vertices with close-by values

and exclude those for which the values differ significantly

from the values of the included vertices. If instead of

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 8, August 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3844 237

similarity, we use a distance measure, the cluster boundary

should be located in an area where including more of the

outside vertices would drastically increase the intracluster

distances (for example, the sum of squares of all-pairs

distances). Hence, with distance measures, it is desirable

to cluster together vertices that have small distances to

each other.

F. Complexity of global clustering

In this section we discuss some related problems where a
dataset- which can be represented as a (weighted)

complete graph is divided into clusters that optimize a

certain criteria. Understanding of the approximability and

the algorithms for these problems helps to understand how

good global clustering algorithms can be.

The minimum k-clustering problem is the combinatorial

optimization problem where a finite data set D is given

together with a distance function d: D x D → N, where d

satisfies the triangle inequality (Eq. (28)). The task is to

partition D into k clusters C1, C2……Ck, where Ci ∩ Cj =

∅ for i ≠ j, such that the maximum intercluster distance is
minimized (i.e. the maximum distance between two points

assigned to the same cluster). This problem is

approximable within a factor of two, but not approximable

within (2 - ∈) for any ∈ > 0 [21, 22].

II. APPLICATIONS OF GRAPH CLUSTERING

As has been emphasized repeatedly throughout the survey,

the task of clustering is highly application-specific. In this

section we review some of the key application areas of
graph clustering, although it is not to be forgotten that

many problems allow the utilization of other

representations as well and hence clustering algorithms for

feature vectors or others kinds of classification systems,

for example, may equally be applied. We begin by

viewing how data sets composed of points in n-

dimensional space can be transformed into graphs.

G. Data transformations

The range of interesting clustering applications is wide, as

many if not practically all systems of interacting (or

simply coexisting) entities can be modelled in some way
as graphs. For data that are not readily in graph, several

transformations into graph representations are possible. In

this section we discuss some of the various possibilities to

convert feature-vector data into graph format.

Transformations vice versa exist as well [23], but as the

focus of this survey are graph-theoretical clustering

algorithms, we do not address those.

One option on how to convert feature-vector data into
graph format is the Delaunay graph. The Delaunay graph

of a set of points on a plane can be constructed by

representing each point by a vertex and placing an edge

between each pair of points that are Voronoi neighbours

[24]. The approach naturally generalizes to higher

dimensions. Two points are Voronoi neighbours if their

Voronoi cells are adjacent [25]. A Voronoi cell of a datum

is formed by those points in the data space that are closer

to that data point than any other. The boundaries of the

Voronoi cells are hyperplanes that partition the space in

which the data lie.

III. ALGORITHM

Cluster(G)

1 for each vertex u ∈ G.V

2 {
3 u.color = White

4 u.cluster = Nil

5 }

6 for each edge (u,v) ∈ G.E

7 {

8 (u,v).color = Green

9 SetLabel ((u,v), Undetermined)

10 }

11 Cluster_Count = 0

12 Cluster_Limit = 3

13 Q = ∅

14 for each vertex u ∈ G.V

15 {

16 if(u.color == white)

17 {

18 Cluster_Count =

Cluster_Count+1

19 Enqueue (Q,u)

20 Set Cluster_Cluster_Count = ∅

21 count = 0

22 while (Q ≠ ∅)

23 {

24 u = Dequeue(Q)

25 for each vertex v ∈

G.Adj[u]

26 {

27 if (v.color ==

White)

28 {

29 v.color =
Gray

30 Enqueue

(Q,v)

31 }

32 }

33 u.color = Black

34 u.cluster =

Cluster_Count

35 Set

Cluster_Cluster_Count = Set Cluster_Cluster_Count ∪{u}

36 count = count + 1
37 if (count ==

Cluster_Limit)

38 {

39 if (Q ≠ ∅)

40 {

41

Cluster_Count = Cluster_Count+1

42 Set

Cluster_Cluster_Count = ∅

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 8, August 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3844 238

43 u =

Dequeue(Q)

44 while (Q

≠∅)

45 {

46 v = Dequeue(Q)

47 v.color = White

48 }

49 Enqueue (Q,u)
50 count = 0

51 }

52 }

53

54 }End of While

55 }End of If

56 }End of for

57 for each edge (u,v) ∈ G.E

58 {

59 if (u.cluster == v.cluster)
60 {

61 SetLabel ((u,v), Cluster_Edge)

62 }

63 else

64 {

65 (u,v).color = Red

66 SetLabel((u,v),

Cluster_Connecting_Edge)

67 }

68 }

A. Some of the attributes for vertices and edges assumed

in this algorithm are as follows

 For a vertex u ∈ G.V the attribute u.color holds the
color of the vertex u.

 For a vertex u ∈ G.V the attribute u.cluster holds the
number of the cluster in which the vertex u is present.

For ex: if the vertex „u‟ is present in cluster 1 then the

u.cluster attribute will be having the value u.1.

 For a edge (u,v) ∈ G.E the attribute (u,v).color holds
the color of the edge (u,v).

 For a a edge (u,v) ∈ G.E the SetLabel function assigns
a label depending upon the situation such as,

o If the edge connects two vertices present in the same

cluster then the label will be set as „Cluster_Edge‟.

o If the edge connects two vertices present in different

clusters then the label will be set as

„Cluster_Connecting_Edge‟.

B. Working of the Algorithm : The working of the above

algorithm is as explained below

 The for loop in lines 1-5 initializes all the vertices of

the given graph. The u.color attribute is set to „White‟

for all the vertices in line 3. And the u.cluster attribute

is set to „Nil‟ for all the vertices in line 4.

 The for loop in lines 6-10 initializes all the edges of the

given graph. The (u,v).color attribute of all the edges is

set to „Green‟ in line 8 and the label of all the edges is

set to „Undetermined‟ in line 9.

 In line 11 a variable „Cluster_Count‟ is declared and

initialized with zero. This variable gives the total

number of clusters formed.

 In line 12 a constant „Cluster_Limit‟ is declared and

initialized with value 3. This value gives the upper

limit on the size of a cluster.

 A queue „Q‟ is declared and initialized with null in line

13.

 The for loop in lines 14-56 scans every vertex u ∈ G.V
of the given graph and forms clusters accordingly.

o The condition in line 16 checks whether the color of

vertex u==white, if so, then the variable
„Cluster_Count‟ is incremented by 1 in line 18. The

vertex „u‟ is enqueued into the queue „Q‟ in line 19. A

set data structure „Cluster_Cluster_Count‟ is declared

and initialized with null in line 20. And a variable

„count‟ is declared and initialize with 0 in line 21.

o The While loop in lines 22-44 forms the clusters

according to the advance of the BFS algorithm

(limiting the number of nodes in a cluster to 3).

The vertex „u‟ is dequeued from the front of the queue „Q‟

in line 24. The for loop in lines 25 to 32 scans the

adjacency list of the vertex „u‟ which is dequeued in line
24. The condition in line 27 checks whether the color of

the vertex „v‟ is white, if so, then the v.color attribute is set

to Gray in line 29 and the vertex „v‟ is enqueued into the

rear end of the queue „Q‟ in line 30. The color attribute of

vertex „u‟ is set to „Black‟ in line 33. The „u.cluster‟

attribute is assigned the value Cluster_Count in line 34.

The vertex „u‟ is added to the set „Cluster_Cluster_Count‟

in line 35 and the value of the variable „count‟ is

incremented by 1 in line 36.

o The condition in line 37 checks whether the value of

the variable „count‟ is Equal to „Cluster_Limit‟. If so,

then the condition in line 39 checks whether the queue

„Q‟ is not empty, if so then, the variable
„Cluster_Count‟ is incremented by 1 in line 41. A set

data structure „Cluster_Cluster_Count‟ is declared and

initialized with null in line 42. A vertex „u‟ which is at

the rear end of the queue „Q‟ is dequeued in line 43

(which will be later used as the starting point for new

cluster). And the while loop in lines 44-48 dequeues

every vertex „v‟ from the queue „Q‟ and sets the

v.color attribute to white in line 47. The vertex „u‟

which was dequeued in line 43 will be enqueued into

the queue „Q‟ in line 49 and the variable „count‟ is

once again set to zero (0) in line 50.

 The for loop in lines 57-68 is used to determine the
edges as either „Cluster_Edges‟ or

„Cluster_Connecting_Edges‟

o The condition in line 59 checks whether the attributes

v.cluster == u.cluster , if so, then both the vertices

belong to the same cluster and the label „Cluster_Edge‟

is set to the edge (u,v) in line 61.

o If the condition in line 47 fails then, the color attribute

of the edge (u,v) is set to Red in line 65 and the Label

„Cluster_Connecting_Edge‟ is set to the edge (u,v) in

line 66.

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 8, August 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3844 239

IV. TIME COMPLEXITY

 The for loop in lines 1-5 initializes every vertex u ∈
G.V in the graph and hence it takes O (V) time.

 The for loop of lines 6-10 initializes every edge (u,v) ∈
G.E in the graph and hence it takes O(E) time.

 The for loop in line 14-56 executes once for every

vertex u ∈ G.V in the graph and the logic used to form

clusters within this for loop is same as that of BFS

algorithm. Hence the total time taken by this section of

the algorithm will be equal to O(V+E) time.

 The for loop in lines 57-68 scans every edge (u,v) ∈
G.E in the graph and hence it takes O(E) time.

Hence the total time complexity of the above algorithm is;

 O (V) + O (E) + O (V+E) + O (E) = O (V + E)

REFERENCES

[1] E. N. Gilbert, Random graphs, Annals of Mathematical Statistics 30

(4) (1959) 1141-1144.

[2] Condon, R.M. Karp, Algorithms for graph partitioning on the

planted partition model, Random Structures & Algorithms 18 (2)

(2001) 116-140.

[3] F. McSherry, Spectral partitioning of random graphs, in:

Proceedings of the Fourty-Second IEEE Symposium on

Foundations of Computer Science, FOCS, IEEE Computer Society

Press, Washington, DC, USA, 2001.

[4] J. Edachery, A. Sen, F.J. Brandenburg, Graph clustering using

distance-k cliques, in: Proceedings of the Seventh International

Symposium on Graph Drawing, in: Lecture Notes in Computer

Science, vol. 1731, Springer-Verlag GmbH, Berlin, Heidelberg,

Germany, 1999.

[5] L.M.A. Bettencourt, Tipping the balance of a small world, Tech.

Rep. MIT-CTP-3361 (cond-mat/0304321 at arXiv.org), Center for

Theoretical Physics, Massachusetts Institute of Technology,

Cambridge, MA, USA, 2002.

[6] M. Girvan, M.E.J. Newman, Community structure in social and

biological networks, Proceedings of the National Academy of

Sciences, USA 99 (2002) 8271-8276.

[7] R. Kannan, S. Vempala, A. Vetta, On clusterings- good, bad and

spectral, Journal of the ACM 51 (3) (2004) 497-515.

[8] J. M. Kleinberg, S. Lawrence, The structure of the Web, Science

294 (5548) (2001) 1849-1850.

[9] M.E.J. Newman, Fast algorithm for detecting community structure

in networks, Physical Review E 69 (6) (2004) 066133.

[10] M.E.J. Newman, Detecting community structure in networks, The

European Physical Journal B 38 (2) (2004) 321-330.

[11] F. Hoppner, F. Kalwonn, R. Kruse, T. Runkler, Fuzzy Cluster

Analysis: Methods for classification, Data Analysis and Image

Recognition, John Wiley & Sons, Inc., Hoboken, NJ, USA, 1999.

[12] Gath, A.B. Geva, Unsupervised optimal fuzzy clustering, IEEE

Transactions on Pattern Analysis and Machine Intelligence 11 (7)

(1989) 773-780.

[13] [239]

[14] [241]

[15] R.N. Dave, R. Krishnapuram, Robust clustering methods: A unified

view, IEEE Transactions of Fuzzy Systems 5 (2) (1997) 270-293.

[16] Yihong Dong, Yueting Zhuang, Ken Chen, Xiaoying Tai, A

hierarchical clustering algorithm based on fuzzy graph

connectedness, Fuzzy Sets and Systems 157 (13) (2006) 1760-1774.

[17] J.J.M. Carrasco, D.C. Fain, K.J. Lang, L. Zhukov, Clustering of

bipartite advertiser-keyword graph, in: Proceedings of the Third

IEEE International Conference on Data Mining Workshop on

Clustering Large Data Sets, 2003.

[18] Z. Broder, S.R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,

R. Stata, A. Tomkins, J. Wiener, Graph structure in the Web,

Computer Networks 33 (1-6) (2000) 309-320.

[19] S. E. Virtanen, Clustering the Chilean web, in: Proceedings of the

First Latin American Web Congress, LAWEB, IEEE Computer

Society, Los Alamitos, CA, USA, 2003.

[20] S. Brin, L. Page, The anatomy of a large-scale hypertextual Web

search engine, Computer Networks and ISDN Systems 30 (1-7)

(1998) 107-117.

[21] T.F. Gonzalez, Clustering to minimize the maximum intercluster

distance, Theoretical Computer Science 38 (1985) 293-306

[22] D.D. Hochbaum, D.B. Shmoys, A unified approach to

approximation algorithms for bottleneck problems, Journal of the

ACM 33 (3) (1986) 533-550.

[23] R. Wilson, X. Bai, E.R. Hancock, Graph clustering using

symmetric polynomials and local linear embedding, in: British

Machine Vision Conference, 2003.

[24] K. Jain, M.N. Murty, P.J.Flynn, Data Clustering: A review, ACM

Computing Surveys 31 (3) (1999) 264-323.

[25] F. Aurenhammer, Voronoi diagrams- A survey of a fundamental

geometric data structure, ACM Computing Surveys 23 (3) (1991)

345-405.

