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Abstract: Graphs are structures formed by a set of vertices also called nodes and set of edges that are connections 

between pairs of vertices. Graph clustering is the task of grouping the vertices of the graph into clusters taking into 

consideration the edge structure of the graph in such a way that there should be many edges within each cluster and 
relatively few between the clusters. Here we present a polynomial time algorithm clustering a given graph according to 

modified BFS algorithm. 
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I. INTRODUCTION 

 

A. Graph Clustering 

1)  Models for clustered graphs:   

Gilbert [1] presented in 1959 a process of generating 

uniform random graphs with n vertices: each of the  
possible edges is included in the graph with probability p, 

considering each pair of vertices independently. In such 

uniform random graphs, the degree distribution is 

Poissonian. Also, the presence of dense clusters is unlikely 
as the edges are distributed by construction uniformly, and 

hence no dense clusters can be expected. 
 

A generalization of the Gilbert model, especially designed 

to produce clusters, is the planted l-partition model [2]: a 

graph is generated with n= l.k vertices that are partitioned 

into l groups each with k vertices. Two probability 

parameters p and q <p are used to construct the edge set: 

each pair of vertices that are in the same group share an 

edge with the higher probability p, whereas each pair of 

vertices in different groups shares an edge with the lower 

probability r. The goal of the planted partition problem is 

to recover such a planted partition into l clusters of k 

vertices each, instead of optimizing some measure on the 
partition. McSherry [3] discusses also planted versions of 

other problems such as k-clique and graph colouring. 

 

2)  Cluster Properties:   

No single definition of a cluster in graphs is universally 

accepted, and the variants used the literature are numerous 

[4]. In the setting of graphs, each cluster should intuitively 

be connected: there should be at least one, preferably 

several paths connecting each pair of vertices within a 

cluster. If a vertex u cannot be reached from a vertex v, 

they should not be grouped in the same cluster. 

Furthermore, the paths should not be internal to the cluster. 
As a consequence, when clustering a disconnected graph 

with known components, the clustering should usually be 

conducted on each component separately, unless some 

global restriction on the resulting clusters is imposed. In 

some applications one may wish to obtain clusters of 

similar order and /or density, in which case the clusters 

computed in one component also influence the clustering‟s  

 

 

of other components. It is generally agreed upon that a 

subset of vertices forms a good cluster if the induced 

subgraph is dense, but there are relatively few connections 

from the included vertices to vertices in the rest of the 

graph [5, 6, 7, 8, 9]. 
One measure that helps to evaluate the sparsity of 

connections from the cluster to the rest of the graph is the 

cut size c (C, V/C). The smaller the cut size, the better 

“isolated” the cluster. Determining when a cluster is dense 

is naturally achieved by computing the graph density. We 

refer to the density of the subgraph induced by the cluster 

as the internal or intra-cluster density: 

 
 

The intercluster density of a given clustering of a graph G 

into k clusters C1, C2……Ck is the average of the 

intercluster densities of the included clusters: 

 
 

The external or inter-cluster density is of a clustering is 

defined as the ratio of intercluster edges to the maximum 

number of intercluster edges possible, which is effectively 

the sum of the cut sizes of all the clusters, normalized to 

the range [0,1]: 

 
 

Globally speaking, the internal density of a good 

clustering should be notably higher than the density of the 

graph (Eq. (3)) and the inter cluster density of the 
clustering should be lower than the graph density [10]. 
 

For general clustering tasks, fuzzy clustering algorithms 

have been proposed [11, 12], as well as validity measures 

[13]. Within graph clustering, not much work can be found 

on fuzzy clustering, and in general, the past decade has 

been quiet on the area of fuzzy clustering. Yan and Hsiao 
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[14] present a fuzzy graph clustering algorithm and apply 

it to circuit partitioning. A study on general clustering 

methods using fuzzy set theory is presented by Dave and 

Krishnapuram [15]. 

A fuzzy graph GR = (V,R) is composed of a set of vertices 

and a fuzzy edge-relation R that is reflexive and 

symmetrical together with a membership function µR 

assigns to each fuzzy edge a level of “presence” in the 

graph [16]. Different nonfuzzy graphs can be obtained by 

thresholding   µR (v, u) ≥ τ  are included as edges in Gτ. 
The graph Gτ is called a cut graph of GR. 

Dong et al. [16] present a clustering method based on a 

connectivity property of fuzzy graphs assuming that the 

vertices represent a set of objects that is being clustered 

based on a distance measure. Their algorithm first 

preclusters the data into subclusters based on the distance 

measure, after which fuzzy graph if constructed for each 

subcluster and a cut graph of the resulting graph is used to 

define what constitutes a cluster. Dong et al. also discuss 

the modifications needed in the current clustering upon 

updates in the database that contains the objects to be 
clustered. 

Fuzzy clustering has not been established as a widely 

accepted approach for graph clustering,  but  it offers more 

relaxed alternative for applications where assigning each 

vertex to just one cluster seems restricting while the vertex 

does relate more strongly to some of the candidate clusters 

than to others. 

 

B. Clusters for different classes of graphs 

It is common that in applications, the graphs are not just 

simple, unweighted and undirected. If more than one edge 

is allowed between two vertices, instead of a binary 
adjacency matrix it is customary to use a matrix that 

determines for each pair of vertices how may edges they 

share. Graphs with such edge multiplicities are called 

multigraphs.  

Also, should the graph be weighted, cutting an important 

edge (with a large weight) when separating a cluster is to 

be punished more heavily than cutting a few unimportant 

edges (with very small weights). Edge multiplicities can in 

essence be treated as edge weights, but the situation 

naturally gets more complicated if the multiple edges 

themselves have weights. 
 

Luckily, many measures extend rather fluently to 

incorporate weights or multiplicities. It is especially easy 

when the possible values are confined to a known range, 

as this range can be transformed into the interval [0, 1] 

where one corresponds to as “full” edge, intermediate 

values to “partial” edges, and zero to there being no edge 

between two vertices. With such a transformation, we may 

compute density not by counting edges but summing over 

the edge weights in the unit line: the internal density of a 

cluster e (Eq. (22)) on Section 3.2 is rewritten as to 

account for the degree of “presence” of the edges. 
 

 

Now a cluster of high density has either many edges or 

important edges, and a low-density cluster has either few 

or unimportant edges. It may be desirable to do a nonlinear 

transformation from the original weight set to the unit line 

to adjust the distribution of edge importance if the 

clustering results obtained by the linear transformation 

appear noisy or otherwise unsatisfactory. 

 

C. Bipartite graphs 

A bipartite graph is a graph where the vertex set V can be 
split in two sets A and B such that all edges lie between 

those two sets: if(v, w) ∈ E, either v ∈ A and w ∈ B or v ∈ 

B and w ∈ A. Such graphs are natural for many 

application areas where the vertices represent two distinct 

classes of objects, such as customers and products; an 

edge could signify for example that certain customer has 

bought a certain product. Possible clustering tasks could 

be grouping the customers by the types of products they 

purchase or grouping products purchased by the same 

people – the motivation could be targeted marketing, for 
instance. Carrasco et al. [17] study a graph of advertisers 

and keywords used in advertisements to identify 

submarkets by clustering. 

 

D. Directed graphs 

Up to now, we have been dealing with undirected graphs. 

Let us turn into directed graphs, which require special 

attention, as the connections that are used in defining the 

clustering are asymmetrical and so is the adjacency matrix. 

This causes relevant changes in the structure of the 

Laplacian matrix and hence makes spectral analysis more 
complex. 
 

Web graphs [18] are directed graphs formed by web pages 

as vertices and hyperlinks as edges. A clustering of a 

higher-level web graph formed by all Chilean domains 

was presented by Virtanen [19]. Clustering of web pages 

can help identify topics and group similar pages. This 

opens applications in search-engine technology; building 

artificial clusters is known to be a popular trick among 

websites of adult content to try to fool the PageRank 
algorithm [20] used by Google to rate the quality of 

websites. 

 

E. Vertex similarity 

There are many clustering algorithms based on similarities 

between the vertices. Should the vertices represent 

documents, for example, one could compute content-based 

similarity matrix as a basis for the clustering, attempting to 

group together vertices that are not only well connected 

but also similar to each other. The higher the similarity, 

the stronger the need to cluster the vertices together. 
Computing such similarities is not necessarily simple, and 

in some cases evaluating the similarity of two vertices may 

turn out to be a task even more complex than the 

clustering of the graph once the similarities are known. 

If a similarity measure has been defined for the vertices, 

the cluster should contain vertices with close-by values 

and exclude those for which the values differ significantly 

from the values of the included vertices. If instead of 
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similarity, we use a distance measure, the cluster boundary 

should be located in an area where including more of the 

outside vertices would drastically increase the intracluster 

distances (for example, the sum of squares of all-pairs 

distances). Hence, with distance measures, it is desirable 

to cluster together vertices that have small distances to 

each other. 

 

F. Complexity of global clustering 

In this section we discuss some related problems where a 
dataset- which can be represented as a (weighted) 

complete graph is divided into clusters that optimize a 

certain criteria. Understanding of the approximability and 

the algorithms for these problems helps to understand how 

good global clustering algorithms can be. 

The minimum k-clustering problem is the combinatorial 

optimization problem where a finite data set D is given 

together with a distance function d: D x D → N, where d 

satisfies the triangle inequality (Eq. (28)). The task is to 

partition D into k clusters C1, C2……Ck, where Ci ∩ Cj = 

∅ for i ≠ j, such that the maximum intercluster distance is 
minimized (i.e. the maximum distance between two points 

assigned to the same cluster). This problem is 

approximable within a factor of two, but not approximable 

within (2 - ∈ ) for any ∈ > 0 [21, 22]. 

 

II. APPLICATIONS OF GRAPH CLUSTERING 

 

As has been emphasized repeatedly throughout the survey, 

the task of clustering is highly application-specific. In this 

section we review some of the key application areas of 
graph clustering, although it is not to be forgotten that 

many problems allow the utilization of other 

representations as well and hence clustering algorithms for 

feature vectors or others kinds of classification systems, 

for example, may equally be applied. We begin by 

viewing how data sets composed of points in n-

dimensional space can be transformed into graphs. 

 

G. Data transformations 

The range of interesting clustering applications is wide, as 

many if not practically all systems of interacting (or 

simply coexisting) entities can be modelled in some way 
as graphs. For data that are not readily in graph, several 

transformations into graph representations are possible. In 

this section we discuss some of the various possibilities to 

convert feature-vector data into graph format. 

Transformations vice versa exist as well [23], but as the 

focus of this survey are graph-theoretical clustering 

algorithms, we do not address those. 
 

One option on how to convert feature-vector data into 
graph format is the Delaunay graph. The Delaunay graph 

of a set of points on a plane can be constructed by 

representing each point by a vertex and placing an edge 

between each pair of points that are Voronoi neighbours 

[24]. The approach naturally generalizes to higher 

dimensions. Two points are Voronoi neighbours if their 

Voronoi cells are adjacent [25]. A Voronoi cell of a datum 

is formed by those points in the data space that are closer 

to that data point than any other. The boundaries of the 

Voronoi cells are hyperplanes that partition the space in 

which the data lie.  

 

III. ALGORITHM  

 

Cluster(G) 

1 for each vertex u ∈ G.V 

2 { 
3       u.color = White 

4       u.cluster = Nil 

5 } 

6 for each edge (u,v) ∈ G.E 

7 { 

8       (u,v).color = Green 

9       SetLabel ( (u,v), Undetermined) 

10 } 

11 Cluster_Count = 0 

12 Cluster_Limit = 3 

13 Q = ∅ 

14 for each vertex u ∈ G.V 

15 { 

16  if( u.color == white) 

17  { 

18   Cluster_Count = 

Cluster_Count+1 

19   Enqueue (Q,u) 

20   Set Cluster_Cluster_Count = ∅ 

21   count = 0 

22   while (Q ≠ ∅) 

23   { 

24             u = Dequeue(Q) 

25               for each vertex v ∈ 

G.Adj[u] 

26    { 

27         if (v.color == 

White) 

28            { 

29      v.color = 
Gray 

30      Enqueue 

(Q,v) 

31             } 

32    } 

33    u.color = Black 

34    u.cluster = 

Cluster_Count 

35    Set 

Cluster_Cluster_Count = Set Cluster_Cluster_Count ∪{u} 

36    count = count + 1 
37    if (count == 

Cluster_Limit) 

38    { 

39         if (Q ≠ ∅) 

40             { 

41        

Cluster_Count = Cluster_Count+1 

42        Set 

Cluster_Cluster_Count = ∅ 
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43        u = 

Dequeue(Q) 

44        while (Q 

≠∅) 

45      { 

46         v = Dequeue(Q) 

47          v.color = White 

48      } 

49     Enqueue (Q,u) 
50     count = 0 

51     } 

52     } 

53     

54   }End of While  

   

55  }End of If 

56 }End of for 

57 for each edge (u,v) ∈ G.E 

58 { 

59  if ( u.cluster == v.cluster) 
60     { 

61   SetLabel ((u,v), Cluster_Edge) 

62      } 

63  else 

64     { 

65     (u,v).color = Red 

66      SetLabel((u,v), 

Cluster_Connecting_Edge) 

67      } 

68 } 

 
A. Some of the attributes for vertices and edges assumed 

in this algorithm are as follows  
 

 For a vertex u ∈ G.V the attribute u.color holds the 
color of the vertex u.  

 For a vertex u ∈ G.V the attribute u.cluster holds the 
number of the cluster in which the vertex u is present. 

For ex: if the vertex „u‟ is present in cluster 1 then the 

u.cluster attribute will be having the value u.1.  

 For a edge (u,v) ∈ G.E the attribute (u,v).color holds 
the color of the edge (u,v). 

 For a a edge (u,v) ∈ G.E the SetLabel function assigns 
a label depending upon the situation such as, 

o If the edge connects two vertices present in the same 

cluster then the label will be set as „Cluster_Edge‟. 

o If the edge connects two vertices present in different 

clusters then the label will be set as 

„Cluster_Connecting_Edge‟. 

 
B. Working of the Algorithm : The working of the above 

algorithm is as explained below  

 The for loop in lines 1-5 initializes all the vertices of 

the given graph. The u.color attribute is set to „White‟ 

for all the vertices in line 3. And the u.cluster attribute 

is set to „Nil‟ for all the vertices in line 4. 

 The for loop in lines 6-10 initializes all the edges of the 

given graph. The (u,v).color attribute of all the edges is 

set to „Green‟ in line 8 and the label of all the edges is 

set to „Undetermined‟ in line 9. 

 In line 11 a variable „Cluster_Count‟ is declared and 

initialized with zero. This variable gives the total 

number of clusters formed. 

 In line 12 a constant „Cluster_Limit‟ is declared and 

initialized with value 3. This value gives the upper 

limit on the size of a cluster. 

 A queue „Q‟ is declared and initialized with null in line 

13. 

 The for loop in lines 14-56 scans every vertex u ∈ G.V 
of the given graph and forms clusters accordingly. 

o The condition in line 16 checks whether the color of 

vertex u==white, if so, then the variable 
„Cluster_Count‟ is incremented by 1 in line 18. The 

vertex „u‟ is enqueued into the queue „Q‟ in line 19. A 

set data structure „Cluster_Cluster_Count‟ is declared 

and initialized with null in line 20. And a variable 

„count‟ is declared and initialize with 0 in line 21. 

o The While loop in lines 22-44 forms the clusters 

according to the advance of the BFS algorithm 

(limiting the number of nodes in a cluster to 3). 

 

The vertex „u‟ is dequeued from the front of the queue „Q‟ 

in line 24. The for loop in lines 25 to 32 scans the 

adjacency list of the vertex „u‟ which is dequeued in line 
24. The condition in line 27 checks whether the color of 

the vertex „v‟ is white, if so, then the v.color attribute is set 

to Gray in line 29 and the vertex „v‟ is enqueued into the 

rear end of the queue „Q‟ in line 30. The color attribute of 

vertex „u‟ is set to „Black‟ in line 33. The „u.cluster‟ 

attribute is assigned the value Cluster_Count in line 34. 

The vertex „u‟ is added to the set „Cluster_Cluster_Count‟ 

in line 35 and the value of the variable „count‟ is 

incremented by 1 in line 36. 
 

o The condition in line 37 checks whether the value of 

the variable „count‟ is Equal to „Cluster_Limit‟. If so, 

then the condition in line 39 checks whether the queue 

„Q‟ is not empty, if so then, the variable 
„Cluster_Count‟ is incremented by 1 in line 41. A set 

data structure „Cluster_Cluster_Count‟ is declared and 

initialized with null in line 42. A vertex „u‟ which is at 

the rear end of the queue „Q‟ is dequeued in line 43 

(which will be later used as the starting point for new 

cluster). And the while loop in lines 44-48 dequeues 

every vertex „v‟ from the queue „Q‟ and sets the 

v.color attribute to white in line 47. The vertex „u‟ 

which was dequeued in line 43 will be enqueued into 

the queue „Q‟ in line 49 and the variable „count‟ is 

once again set to zero (0) in line 50. 

 The for loop in lines 57-68 is used to determine the 
edges as either „Cluster_Edges‟ or 

„Cluster_Connecting_Edges‟ 

o The condition in line 59 checks whether the attributes 

v.cluster == u.cluster , if so, then both the vertices 

belong to the same cluster and the label „Cluster_Edge‟ 

is set to the edge (u,v) in line 61.  

o If the condition in line 47 fails then, the color attribute 

of the edge (u,v) is set to Red in line 65 and the Label 

„Cluster_Connecting_Edge‟ is set to the edge (u,v) in 

line 66. 
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IV. TIME COMPLEXITY 

 

 The for loop in lines 1-5 initializes every vertex u ∈ 
G.V in the graph and hence it takes O (V) time. 

 The for loop of lines 6-10 initializes every edge (u,v) ∈ 
G.E in the graph and hence it takes O(E) time. 

 The for loop in line 14-56 executes once for every 

vertex u ∈ G.V in the graph and the logic used to form 

clusters within this for loop is same as that of BFS 

algorithm. Hence the total time taken by this section of 

the algorithm will be equal to O(V+E) time. 

 The for loop in lines 57-68 scans every edge (u,v) ∈ 
G.E in the graph and hence it takes O(E) time. 

 

Hence the total time complexity of the above algorithm is; 

 

  O (V) + O (E) + O (V+E) + O (E) = O (V + E) 
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